LSTMCell_cdopt#
CLASS cdopt.nn.LSTMCell_cdopt(input_size, hidden_size, bias=True, device=None, dtype=None, manifold_class = euclidean_torch, penalty_param = 0, manifold_args = {})
A long short-term memory (LSTM) cell,
where \(\sigma\) is the sigmoid function, and \(*\) is the Hadamard product, and the weight for hidden states \(W_{hh}\) is constrained over the manifold defined by manifold_class
.
Parameters#
input_size – The number of expected features in the input x
hidden_size – The number of features in the hidden state h
bias – If
False
, then the layer does not use bias weights b_ih and b_hh. Default:True
manifold_class – The manifold class for the weight matrix. Default:
cdopt.manifold_torch.euclidean_torch
penalty_param – The penalty parameter for the quadratic penalty terms in constraint dissolving function
manifold_args - The additional key-word arguments that helps to define the manifold constraints.
Shapes#
Inputs#
input, (h_0, c_0)
input of shape (batch, input_size) or (input_size): tensor containing input features
h_0 of shape (batch, hidden_size) or (hidden_size): tensor containing the initial hidden state
c_0 of shape (batch, hidden_size) or (hidden_size): tensor containing the initial cell state
If (h_0, c_0) is not provided, both h_0 and c_0 default to zero.
Outputs#
h_1, c_1
h_1 of shape (batch, hidden_size) or (hidden_size): tensor containing the next hidden state
c_1 of shape (batch, hidden_size) or (hidden_size): tensor containing the next cell state
Attributes#
manifold (cdopt manifold class) – the manifold that defines the constraints. The shape of the variables in
manifold
is set asvar_shape
.weight_ih (torch.Tensor) – the learnable input-hidden weights, of shape (4*hidden_size, input_size)
weight_hh (torch.Tensor) – the learnable hidden-hidden weights, of shape (4*hidden_size, hidden_size)
bias_ih – the learnable input-hidden bias, of shape (4*hidden_size)
bias_hh – the learnable hidden-hidden bias, of shape (4*hidden_size)
quad_penalty (callable) – the function that returns the quadratic penalty terms of the weights. Its return value equals to \(||\mathrm{manifold.C}(\mathrm{weight})||^2\).
Example#
rnn = cdopt.nn.LSTMCell_cdopt(10, 20, manifold_class = cdopt.manifold_torch.stiefel_torch) # (input_size, hidden_size)
input = torch.randn(2, 3, 10) # (time_steps, batch, input_size)
hx = torch.randn(3, 20) # (batch, hidden_size)
cx = torch.randn(3, 20)
output = []
for i in range(input.size()[0]):
hx, cx = rnn(input[i], (hx, cx))
output.append(hx)
output = torch.stack(output, dim=0)
print(output)